
 
 
 
 
 

 
 

Last Sonata 
Design and Analysis 

 
What have I done so far as a solo game developer? 

 
 
 
 

By Lejia Mu 
 

October 19, 2025 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

Weapon System 
●​ Weapon Framework – Core architecture supporting modular weapon design 

and extensibility for multiple weapon types. 
●​ Firearm Mechanics – Implemented shooting logic (projectile, hitscan, and 

spread patterns), recoil, and rate-of-fire balancing. 
●​ Melee Combat Mechanics – Designed close-range attack system with swing 

detection, hit registration, and stamina integration. 
●​ Reloading System – Created magazine and chamber-based reloading logic, 

supporting partial reloads and interrupt handling. 
●​ Weapon Switching & Slot Management – Built seamless equip/unequip 

system with animation synchronization and hotkey mapping. 
●​ Visual & Audio Feedback – Designed VFX/SFX for muzzle flash, bullet 

impact, shell ejection, and weapon-specific audio cues. 
 
Character Input & Control System 

●​ Buffered Input System – Implemented input buffering to queue player 
actions during animation states 

●​ Action Priority & Interrupt Logic – Built rules to determine which buffered 
actions can override or interrupt current animations 

●​ Combat Input Integration – Synchronized weapon firing, melee attacks, and 
ability activations with input buffering for tight combat responsiveness. 

 
Game UI System 

●​ HUD (Heads-Up Display) – Designed real-time overlays displaying health, 
stamina, ammo, and status effects with dynamic updates. 

 
Dynamic Crosshairs System 

●​ Crosshair Framework – Core architecture supporting modular crosshair 
styles and behaviors across weapon types. 

●​ Weapon-Specific Profiles – Implemented configurable crosshair layouts (rifle 
and pistol) with customizable parameters per weapon class. 

●​ Dynamic Spread & Accuracy Subsystem – Linked crosshair expansion to 
weapon recoil, bullet spread, and character movement for real-time accuracy 
feedback. 

●​ Hit & Damage Feedback – Added contextual crosshair responses (color 
change, hit marker, kill indicator) on enemy impact. 

 
 
 
 
 
 
 

2 



 

AI Systems 
●​ AI Framework Architecture – Designed a modular enemy AI system fully 

implemented in Blueprints, with a shared parent class and branched child 
classes for distinct behaviours 

●​ Perception Subsystem – Configured vision and hearing detection using 
Pawn Sensing 

●​ State-Based AI Logic - Implemented a lightweight blueprint logic for 
switching between Idle, Patrol, Chase, Attack, and Die 

 
AI Animation System 

●​ Snapshot Pose Integration – Captured current animation poses for smooth 
blending between active animations and ragdoll states (e.g., transition from 
knockdown to collapse). 

●​ Hit Reaction & Force Application – Applied directional forces based on 
weapon impact and projectile trajectory to produce realistic responses. 

●​ Animation Blending Subsystem – Used Blend Spaces and Anim Montages 
to seamlessly interpolate between locomotion, combat, and physics-driven 
poses. 

●​ Damage Type & Context Awareness – Triggered context-sensitive reactions 
based on damage type (rifle, pistol, knife) and hit location (headshot, 
bodyshot). 

 
AI Pathfinding System 

●​ Navigation Mesh Integration – Configured static and dynamic NavMesh to 
allow AI to traverse complex environments. 

●​ NavLink Proxy Subsystem – Implemented jump, climb, and vault links to 
connect disconnected areas, with configurable priority to control AI traversal 
order. 

 
Climb & Vaulting System 

●​ Traversal Framework – Developed a modular system enabling smooth 
character interaction with environmental obstacles like vehicles and fences. 

●​ Obstacle Detection Subsystem – Implemented collision and raycast-based 
detection to identify climbable and vaultable surfaces in real-time. 

●​ Motion Warping Integration – Dynamically adjusted animation root motion to 
match target locations, ensuring precise positioning during vaults, climbs, and 
jumps. 

 
 
 
 
 

3 



 

AI Door Interaction & Breach System 
●​ Door Interaction Framework – Modular system allowing AI to detect, 

evaluate, and interact with doors in the environment. 
●​ Area Detection Subsystem – Implemented spatial checks and trigger 

volumes to determine if players or objects are behind doors before initiating 
an action. 

●​ Door Breach Logic – Enabled AI to dynamically decide whether to break or 
bypass doors based on player presence. 

●​ Destructible Door Integration – Linked AI actions to destructible door 
assets, including physics-driven breakage. 

●​ Priority & Pathfinding Coordination – Integrated with AI pathfinding to 
adjust routes and avoid bottlenecks when multiple AI agents target the same 
door. 

 
AI Dismemberment System 

●​ Dismemberment Framework – Modular system for dynamically handling 
limb detachment and replacement on enemy characters during combat. 

●​ Limb Replacement Subsystem – Enabled procedural replacement of 
damaged limbs with corresponding “dismembered” mesh assets for visual 
accuracy. 

●​ Bone Hiding & Skeleton Adjustment – Implemented hidden bone logic to 
prevent clipping and maintain mesh integrity after limb removal. 

●​ Damage Localization System – Integrated hit detection to determine 
limb-specific damage based on attack type, weapon, and impact location. 

●​ Visual Effects & Feedback – Added niagara effects, blood decals, and audio 
cues tied to limb dismemberment for immersive combat feedback. 

●​ Performance Optimization – Managed limb pool to minimize performance 
impact in encounters with multiple enemies. 

 
Object Pooling System 

●​ Pooling Framework – Designed a modular object pooling system to manage 
high-frequency spawning and recycling of dismembered limb assets for 
performance optimization. 

●​ Limb Spawn & Recycle Subsystem – Dynamically spawned dismembered 
limbs upon damage events and returned them to the pool after reaching the 
capped amount 

 
 
 
 
 
 

4 



 

AI Pooling System 
●​ AI Pooling Framework – Developed a system to efficiently manage 

spawning and recycling of AI characters for large-scale horde encounters. 
●​ Spawn & Despawn Subsystem – Controlled AI lifecycle to dynamically 

spawn enemies in the world and return them to the pool when reaching the 
capped amount 

●​ State Reset & Reinitialization – Reset AI variables, health, animations, and 
physics states when reactivating from the pool to ensure consistent behavior. 

 
Boss Fight System 

●​ Multi-Phase Combat Framework: Implements distinct combat phases 
triggered by health thresholds or scripted events, introducing new attack 
patterns, environmental hazards, and AI behaviors. 

●​ Adaptive Attack Logic: Utilizes procedural decision-making to vary attack 
timing and combos based on player distance, direction, and nearby obstacles. 

 
Level Design 

●​ Branching Area Design: Implements interconnected pathways and optional 
exploration zones that offer tactical choices and replayability. 

●​ Combat Encounter Zones: Defines AI spawn points, cover placement, and 
dynamic engagement regions based on player presence. 

●​ Environmental Narrative System: Uses visual storytelling elements—such 
as lighting cues, environmental decay, and interactive props—to reflect world 
lore and emotional tone. 

●​ Resource Distribution System (In Progress): Dynamically places health 
packs and ammos to encourage strategic exploration and survival pacing. 

 
For visual level-design breakdowns and annotated images, visit my Behance page: 

https://www.behance.net/gallery/223852639/Abandoned-City 
 
 

5 

https://www.behance.net/gallery/223852639/Abandoned-City

