Last Sonata

Design and Analysis

What have | done so far as a solo game developer?

By Lejia Mu

October 19, 2025



Weapon System

Weapon Framework — Core architecture supporting modular weapon design
and extensibility for multiple weapon types.

Firearm Mechanics — Implemented shooting logic (projectile, hitscan, and
spread patterns), recoil, and rate-of-fire balancing.

Melee Combat Mechanics — Designed close-range attack system with swing
detection, hit registration, and stamina integration.

Reloading System — Created magazine and chamber-based reloading logic,
supporting partial reloads and interrupt handling.

Weapon Switching & Slot Management — Built seamless equip/unequip
system with animation synchronization and hotkey mapping.

Visual & Audio Feedback — Designed VFX/SFX for muzzle flash, bullet
impact, shell ejection, and weapon-specific audio cues.

Character Input & Control System

Buffered Input System — Implemented input buffering to queue player
actions during animation states

Action Priority & Interrupt Logic — Built rules to determine which buffered
actions can override or interrupt current animations

Combat Input Integration — Synchronized weapon firing, melee attacks, and
ability activations with input buffering for tight combat responsiveness.

Game Ul System

HUD (Heads-Up Display) — Designed real-time overlays displaying health,
stamina, ammo, and status effects with dynamic updates.

Dynamic Crosshairs System

Crosshair Framework — Core architecture supporting modular crosshair
styles and behaviors across weapon types.

Weapon-Specific Profiles — Implemented configurable crosshair layouts (rifle
and pistol) with customizable parameters per weapon class.

Dynamic Spread & Accuracy Subsystem — Linked crosshair expansion to
weapon recoil, bullet spread, and character movement for real-time accuracy
feedback.

Hit & Damage Feedback — Added contextual crosshair responses (color
change, hit marker, kill indicator) on enemy impact.



Al Systems
e Al Framework Architecture — Designed a modular enemy Al system fully

implemented in Blueprints, with a shared parent class and branched child
classes for distinct behaviours

Perception Subsystem — Configured vision and hearing detection using
Pawn Sensing

State-Based Al Logic - Implemented a lightweight blueprint logic for
switching between Ildle, Patrol, Chase, Attack, and Die

Al Animation System
e Snapshot Pose Integration — Captured current animation poses for smooth

blending between active animations and ragdoll states (e.g., transition from
knockdown to collapse).

Hit Reaction & Force Application — Applied directional forces based on
weapon impact and projectile trajectory to produce realistic responses.
Animation Blending Subsystem — Used Blend Spaces and Anim Montages
to seamlessly interpolate between locomotion, combat, and physics-driven
poses.

Damage Type & Context Awareness — Triggered context-sensitive reactions
based on damage type (rifle, pistol, knife) and hit location (headshot,
bodyshot).

Al Pathfinding System

Navigation Mesh Integration — Configured static and dynamic NavMesh to
allow Al to traverse complex environments.

NavLink Proxy Subsystem — Implemented jump, climb, and vault links to
connect disconnected areas, with configurable priority to control Al traversal
order.

Climb & Vaulting System

Traversal Framework — Developed a modular system enabling smooth
character interaction with environmental obstacles like vehicles and fences.
Obstacle Detection Subsystem — Implemented collision and raycast-based
detection to identify climbable and vaultable surfaces in real-time.

Motion Warping Integration — Dynamically adjusted animation root motion to
match target locations, ensuring precise positioning during vaults, climbs, and
jumps.



Al Door Interaction & Breach System

Door Interaction Framework — Modular system allowing Al to detect,
evaluate, and interact with doors in the environment.

Area Detection Subsystem — Implemented spatial checks and trigger
volumes to determine if players or objects are behind doors before initiating
an action.

Door Breach Logic — Enabled Al to dynamically decide whether to break or
bypass doors based on player presence.

Destructible Door Integration — Linked Al actions to destructible door
assets, including physics-driven breakage.

Priority & Pathfinding Coordination — Integrated with Al pathfinding to
adjust routes and avoid bottlenecks when multiple Al agents target the same
door.

Al Dismemberment System

Dismemberment Framework — Modular system for dynamically handling
limb detachment and replacement on enemy characters during combat.
Limb Replacement Subsystem — Enabled procedural replacement of
damaged limbs with corresponding “dismembered” mesh assets for visual
accuracy.

Bone Hiding & Skeleton Adjustment — Implemented hidden bone logic to
prevent clipping and maintain mesh integrity after limb removal.

Damage Localization System — Integrated hit detection to determine
limb-specific damage based on attack type, weapon, and impact location.
Visual Effects & Feedback — Added niagara effects, blood decals, and audio
cues tied to limb dismemberment for immersive combat feedback.
Performance Optimization — Managed limb pool to minimize performance
impact in encounters with multiple enemies.

Object Pooling System

Pooling Framework — Designed a modular object pooling system to manage
high-frequency spawning and recycling of dismembered limb assets for
performance optimization.

Limb Spawn & Recycle Subsystem — Dynamically spawned dismembered
limbs upon damage events and returned them to the pool after reaching the
capped amount



Al Pooling System

e Al Pooling Framework — Developed a system to efficiently manage
spawning and recycling of Al characters for large-scale horde encounters.

e Spawn & Despawn Subsystem — Controlled Al lifecycle to dynamically
spawn enemies in the world and return them to the pool when reaching the
capped amount

e State Reset & Reinitialization — Reset Al variables, health, animations, and
physics states when reactivating from the pool to ensure consistent behavior.

Boss Fight System
e Multi-Phase Combat Framework: Implements distinct combat phases
triggered by health thresholds or scripted events, introducing new attack
patterns, environmental hazards, and Al behaviors.
e Adaptive Attack Logic: Utilizes procedural decision-making to vary attack
timing and combos based on player distance, direction, and nearby obstacles.

Level Design

e Branching Area Design: Implements interconnected pathways and optional
exploration zones that offer tactical choices and replayability.

e Combat Encounter Zones: Defines Al spawn points, cover placement, and
dynamic engagement regions based on player presence.

e Environmental Narrative System: Uses visual storytelling elements—such
as lighting cues, environmental decay, and interactive props—to reflect world
lore and emotional tone.

e Resource Distribution System (In Progress): Dynamically places health
packs and ammos to encourage strategic exploration and survival pacing.

For visual level-design breakdowns and annotated images, visit my Behance page:
https://www.behance.net/gallery/223852639/Abandoned-City



https://www.behance.net/gallery/223852639/Abandoned-City

